Depolarization block of neurons during maintenance of electrographic seizures.

نویسندگان

  • Marom Bikson
  • Philip J Hahn
  • John E Fox
  • John G R Jefferys
چکیده

Epileptic seizures are associated with neuronal hyperactivity. Here, however, we investigated whether continuous neuronal firing is necessary to maintain electrographic seizures. We studied a class of "low-Ca2+" ictal epileptiform bursts, induced in rat hippocampal slices, that are characterized by prolonged (2-15 s) interruptions in population spike generation. We found that, during these interruptions, neuronal firing was suppressed rather than desynchronized. Intracellular current injection, application of extracellular uniform electric fields, and antidromic stimulation showed that the source of action potential disruption was depolarization block. The duration of the extracellular potassium transients associated with each ictal burst was not affected by disruptions in neuronal firing. Application of phenytoin or veratridine indicated a critical role for the persistent sodium current in maintaining depolarization block. Our results show that continuous neuronal firing is not necessary for the maintenance of experimental electrographic seizures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Localized excitatory synaptic interactions mediate the sustained depolarization of electrographic seizures in developing hippocampus.

Repetitive synchronized neuronal discharging that lasts for seconds and even minutes in in vitro brain slice preparations are important new models in experimental epilepsy. In hippocampal slices from 1-2-week-old rats, individual CA3 pyramidal cells undergo a sustained depolarization during such electrographic seizures, induced by GABAA receptor antagonists. In experiments reported here these e...

متن کامل

Hyperexcitability of intact neurons underlies acute development of trauma-related electrographic seizures in cats in vivo.

Cortical trauma can lead to development of electrographic paroxysmal activities. Current views of trauma-induced epileptogenesis suggest that chronic neuronal hyperexcitability and extensive morphological reorganization of the traumatized cortex are required for the generation of electrographic seizures. However, the mechanisms responsible for the initiation of electrographic seizures shortly a...

متن کامل

Soufiane Boucetta Modulation of Intrinsic and Synaptic Excitability during Sleep Oscillations and Electrographic Seizures

The present memoir provides new evidences showing the modulation of intrinsic and synaptic excitability of cortical neurons, and the consequence of this modulation on neuronal activity during both slow sleep oscillations and electrographic seizures in vivo in anaesthetized animals. We performed simultaneous recordings of cortical neurons with local field potentials in suprasylvian gyrus within ...

متن کامل

Contribution of intrinsic neuronal factors in the generation of cortically driven electrographic seizures.

Some electrographic seizures are generated intracortically. The cellular and ionic bases of cortically generated spontaneous seizures are not fully understood. Here we investigated spontaneously occurring seizures consisting of spike-wave complexes intermingled with fast runs in ketamine-xylazine anesthetized cats, using dual intracellular recordings in which one pipette contained a control sol...

متن کامل

Inter-ictal- and ictal-like epileptic discharges in the dendritic tree of neocortical pyramidal neurons.

Dendritic mechanisms have been implied to play a key role in the formation of epileptic discharges. However, presently only a handful of direct dendritic recordings have been reported during epileptic discharges. In this study, I performed simultaneous voltage recordings from the soma and apical dendrite of the same neuron combined with calcium-imaging measurements to investigate inter-ictal- a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 90 4  شماره 

صفحات  -

تاریخ انتشار 2003